

The Truth About Vacuums

George W. Kalet
Sales Director–LNG Vehicle System
NGV Technology Forum
January 29, 2003

Vacuum Overview

- Basics of Vacuum
- Vacuum Life Expectancy
- What Affects Vacuum?
- Extending Vacuum Life
- Experience & Analysis
- Restoring Vacuum in the Field
- Summary

Definition of Vacuum

Merriam-Webster Defines Vacuum as:

- a) A space absolutely devoid of matter.
- b) A space partially exhausted by artificial means (a pump).

Cryogenic Insulation Requires (a).

Vacuum Life Expectancy

Vacuum at Shipment is Less Than 5 Microns

- Perfect Vacuums are not Permanent
 - Expect 7-10 Years in N₂, O₂ & CO₂ Service.
 - Vacuum Levels Deteriorate Over Time.

This is Referred to as a "Soft" Vacuum.

- What Causes a Vacuum to go "Soft"?
 - Air Molecules Enter the Space at Pump Out.
 - Other Molecules Out Gas from the Materials.

Vacuum Trivia

- 1 ATM
- 1 ATM
- 1 PSI
- 1 Torr (1,000 Microns)
- 1" of Water
- 1.0 cc-He/Sec
- .0001 cc-He/Sec
- .000,01 cc-He/Sec
- .000,001 cc-He/Sec
- .000,000,001cc-He/Sec

760 mm Hg

760,000 Microns

51,714 Microns

1 mm of Mercury

1866 Microns

Audible leak

Smallest leak detected

with a bubble test

Smallest leak detected

with a Freon tester

Moisture plugs up a leak

Leak that we test for during

Production

What is Out Gassing?

- Molecules are Released into Vacuum Space
- Sources of Gas Molecules
 - Attached to the Surface of the Material
 - Dissolved in the Material During its Production
- Types of Materials
 - Stainless Steel Inner & Outer Vessels
 - Aluminum Foil & Paper Insulation
- Types of Gases
 - H₂O, O₂, N₂, H₂, CO, CO₂

More on Out Gassing

- Molecules are Released at Varying Rates
- Conditions that May Affect the Rate
 - Surface Finish of the Materials Used
 - Type & Quantities of Gases Present
 - Relative Pressures & Temperatures
- Conditions that May Affect Performance
 - Thermal Conductivity of the Gases

Extending Vacuum Life

- Use of Adsorbents (Getters) in the Space
 - Catalysts are Used to Reform Molecules.
 - Chemical Sponges Absorb New Molecules.
- Cryo-Pumping Phenomenon
 - Cryogenic Temperatures Enhance Vacuum.
 - Shrinking Molecules in the Space.
 - Increased Capacity of Gettering System.

Field Experience on Problem Vehicles

- Exhibit Rapid Pressure Rise
- Vent Fuel to Atmosphere
 - Wastes Fuel
 - Safety Concerns
- 3 Causes of Rapid Pressure Rise
 - "Soft" Vacuum
 - Overfilling
 - Component Malfunction

Analysis of Returned Tanks

- Approx. 6,000 Units Shipped
 - 100 Units Returned for Evaluation
- Tanks Returned for Vacuum Issues
 - Only 70% Vacuum (200-500 Microns)
 - 20% Other (Cosmetic & Piping)
 - 10% Work Fine (Improper Diagnosis)
- Tanks With Vacuum Issues
 - 70% Excess H₂ Gas in Space
 - 20% Atmospheric Gas in Space
 - 10% Other

H₂ Molecules in Vacuum Space

Why So Much H₂?

- Vehicle Service is Very Different
 - H₂ Out Gassing is Increased
 - Engine Heat & Direct Sunlight
 - Volume to Surface Area Ratio is Reduced
 - Long Periods of Non Use Before Filling
- CH₄ is Much Warmer than N₂ & O₂
 - Getter Capacity is Reduced
 - Effects of Cryo-Pumping are Minimal

The Good News Is.....

The Tank Vacuum can be
Easily Restored While the
Tank is on the Vehicle in the
Field

Restoring Vacuum

- Do Not Remove the Tank
- Do Keep the Vehicle in Service
- Confirm "Soft" Vacuum Condition
 - Perform Simple Diagnosis
 - See Field Service Bulletin
- Schedule Vehicle for Service
- Run the Vehicle to Consume Fuel
- Minimal Labor (approx. 4 Hrs.)

Restoring Vacuum

- 1. Drain Any Residual Fuel
- 2. Warm Inner Tank to Ambient
- 3. Break Vacuum with N₂ Gas
- 4. Add Catalyst to Annular Space
- 5. Pump Vacuum Overnight
- 6. Seal Off at Less Than 5 Microns
- 7. Return to Normal Service

Equipment Required

- Field Purge Cart
 - Quickly Warms Tank to Ambient
 - Breaks Back Vacuum with N₂ Gas
 - Cost is Approx. \$4,000.00
- Field Pump Cart
 - Oil Free High Efficiency Pump
 - Requires Std. 110V Outlet
 - Cost is Approx. \$12,000.00

Current Situation

- Chart is Handling All Valid Warranty Claims
- All Problem Units Serviced in Q1 2003.
- 12 Sets of Carts Have Been Deployed in the Field
 - ATC Phoenix/Tempe
 - Orange County Transit Garden Grove/Anaheim
 - City/County of Sacramento
 - Waste Management in California
- Evaluating Logistics and Cost for Service
- Evaluating Changes in Warranty Policy

Summary & Conclusions

- There are No Vacuum Leaks
- Vacuums are not Permanent
- LNG Tanks are Different from N₂ & O₂
- LNG Tanks Require Periodic Service
- Service Can be Performed On Site
- Budget 1 Service Every 3 Years
- Chart is Working to Extend Vacuum Life